Two-dimensional Product Cubic Systems, Vol. VII - cover

Two-dimensional Product Cubic Systems, Vol. VII

Albert C. J. Luo

  • 22 oktober 2024
  • 9783031484827
Wil ik lezen
  • Wil ik lezen
  • Aan het lezen
  • Gelezen
  • Verwijderen

Samenvatting:

The infinite-equilibriums for the switching bifurcations include:

• inflection-saddle infinite-equilibriums,

• hyperbolic-source (sink) infinite-equilibriums,

• up-down (down-up) saddle infinite-equilibriums,

• inflection-source (sink) infinite-equilibriums.



This book, the seventh of 15 related monographs, concerns nonlinear dynamics and singularity of cubic dynamical systems possessing a product-cubic vector field and a self-univariate quadratic vector field. The equilibrium singularity and bifurcation dynamics are discussed. The saddle-source (sink) is the appearing bifurcations for saddle and source (sink). The double-saddle equilibriums are the appearing bifurcations of the saddle-source and saddle-sink, and also the appearing bifurcations of the network of saddles, sink and source. The infinite-equilibriums for the switching bifurcations include:

• inflection-saddle infinite-equilibriums,

• hyperbolic-source (sink) infinite-equilibriums,

• up-down (down-up) saddle infinite-equilibriums,

• inflection-source (sink) infinite-equilibriums.

  • Develops a theory of cubic dynamical systems possessing a product-cubic vector field and a self-quadratic vector field;
  • Finds series/networks of equilibriums, 1-dimenional hyperbolic/hyperbolic-secant flows, finite-equilibrium switching;
  • Presents sink and source separated by a connected hyperbolic-secant flow, and the (SO,SI) and (SI,SO)-saddles.



We gebruiken cookies om er zeker van te zijn dat je onze website zo goed mogelijk beleeft. Als je deze website blijft gebruiken gaan we ervan uit dat je dat goed vindt. Ok