SpringerBriefs in Energy- Mathematical and Statistical Appro ... - cover

SpringerBriefs in Energy- Mathematical and Statistical Appro ...

Federico Moretta

  • 11 april 2024
  • 9783031564598
Wil ik lezen
  • Wil ik lezen
  • Aan het lezen
  • Gelezen
  • Verwijderen

Samenvatting:

Furthermore, it provides valuable insights into discerning the optimal composition capable of yielding the utmost methane output.

The book integrates cutting-edge machine learning techniques and shows how the programming language Python and Julia can be used for analysis and to optimize processes.



This book examines biomass mixture modeling and optimization.

The book discusses anaerobic digestion and related fermentative processes and explains their compositional dynamics. Early chapter examine macromolecules, elemental fractions, and their direct influence on methane production. Supported by an extensive data bank of substrates obtained from research, the book points out correlations that enable the estimation of global methane production for diverse biomass mixtures. Furthermore, it provides valuable insights into discerning the optimal composition capable of yielding the utmost methane output.

The book integrates cutting-edge machine learning techniques and shows how the programming language Python and Julia can be used for analysis and to optimize processes. It has many graphs, figures, and visuals.




We gebruiken cookies om er zeker van te zijn dat je onze website zo goed mogelijk beleeft. Als je deze website blijft gebruiken gaan we ervan uit dat je dat goed vindt. Ok