Mathematics for Physicists and Engineers - cover

Mathematics for Physicists and Engineers

Klaus Weltner

  • 02 november 2009
  • 9783642001727
Wil ik lezen
  • Wil ik lezen
  • Aan het lezen
  • Gelezen
  • Verwijderen

Samenvatting:

Mathematicsisanessentialtoolforphysicistsandengineerswhichstudentsmust usefromtheverybeginningoftheirstudies. Thiscombinationoftextbookandstudy guideaimstodevelopasrapidlyaspossiblethestudents'abilitytounderstandand tousethosepartsofmathematicswhichtheywillmostfrequentlyencounter. Thus functions,vectors,calculus,differentialequationsandfunctionsofseveralvariables arepresentedin averyaccessible way. Furtherchaptersinthe bookprovidethe basicknowledgeonvariousimportanttopicsinappliedmathematics. Basedontheirextensiveexperienceaslecturers,eachoftheauthorshasacquired acloseawarenessoftheneedsof rst-andsecond-yearsstudents. Oneoftheiraims hasbeentohelpuserstotacklesuccessfullythedif cultieswithmathematicswhich are commonlymet. A special feature which extendsthe supportivevalue of the maintextbookistheaccompanying studyguide . Thisstudyguideaimstosatisfy twoobjectivessimultaneously:itenablesstudentstomakemoreeffectiveuseofthe maintextbook,anditoffersadviceandtrainingontheimprovementoftechniques onthestudyoftextbooksgenerally. Thestudyguidedividesthewholelearningtaskintosmallunitswhichthes- dentisverylikelytomastersuccessfully. Thusheorsheisaskedtoreadandstudy alimitedsectionofthetextbookandtoreturntothestudyguideafterwards. Lea- ingresultsarecontrolled,monitoredanddeepenedbygradedquestions,exercises, repetitionsand nallybyproblemsandapplicationsofthecontentstudied. Sincethe degreeofdif cultiesisslowlyrisingthestudentsgaincon denceimmediatelyand experiencetheirownprogressinmathematicalcompetencethusfosteringmoti- tion. Incaseoflearningdif cultiesheorsheisgivenadditionalexplanationsandin caseofindividualneedssupplementaryexercisesandapplications. Sothesequence ofthestudiesisindividualisedaccordingtotheindividualperformanceandneeds andcanberegardedasafulltutorialcourse. TheworkwasoriginallypublishedinGermanyunderthetitle Mathematikfur Physiker (Mathematicsforphysicists). Ithasproveditsworthinyearsofactual use. Thisnew internationalversionhasbeenmodi edand extendedto meet the needsofstudentsinphysicsandengineering. vii viii Preface TheCDofferstwoversions. Ina rstversiontheframesofthestudyguideare presentedonaPCscreen. Inthiscasetheuserfollowstheinstructionsgivenonthe screen,at rststudyingsectionsofthetextbookoffthePC. Afterthisautonomous studyheistoanswerquestionsandtosolveproblemspresentedbythePC. Asecond versionisgivenaspdf lesforstudentspreferringtoworkwithaprintversion. Boththetextbookandthestudyguidehaveresultedfromteamwork. The- thors of the original textbook and study guides were Prof. Dr. Weltner, Prof. Dr. P. -B. Heinrich,Prof. Dr. H. Wiesner,P. EngelhardandProf. Dr. H. Schmidt. Thetranslationandtheadaptionwasundertakenbytheundersigned. Frankfurt,August2009 K. Weltner J. Grosjean P. Schuster W. J. Weber Acknowledgement OriginallypublishedintheFederalRepublicofGermanyunderthetitle MathematikfurPhysiker bytheauthors K. Weltner,H. Wiesner,P. -B. Heinrich,P. EngelhardtandH. Schmidt. TheworkhasbeentranslatedbyJ. GrosjeanandP. Schusterandadaptedtotheneeds ofengineeringandsciencestudentsinEnglishspeakingcountriesbyJ. Grosjean, P. Schuster,W. J. WeberandK. Weltner. ix Contents Preface...vii 1 VectorAlgebraI:ScalarsandVectors...1 1. 1 ScalarsandVectors...1 1. 2 AdditionofVectors...4 1. 2. 1 SumofTwoVectors:GeometricalAddition ...4 1. 3 SubtractionofVectors...6 1. 4 ComponentsandProjectionofaVector ...7 1. 5 ComponentRepresentationinCoordinateSystems...9 1. 5. 1 PositionVector ...9 1. 5. 2 UnitVectors...10 1. 5. 3 ComponentRepresentationofaVector ...11 1. 5. 4 RepresentationoftheSumofTwoVectors inTermsofTheirComponents...12 1. 5. 5 SubtractionofVectorsinTermsoftheirComponents...13 1. 6 MultiplicationofaVectorbyaScalar...14 1. 7 MagnitudeofaVector...15 2 VectorAlgebraII:ScalarandVectorProducts...23 2. 1 ScalarProduct ...23 2. 1. 1 Application:EquationofaLineandaPlane...26 2. 1. 2 SpecialCases ...26 2. 1. 3 CommutativeandDistributiveLaws...27 2. 1. 4 ScalarProductinTermsoftheComponentsoftheVectors. 27 2. 2 VectorProduct...30 2. 2. 1 Torque...30 2. 2. 2 TorqueasaVector...31 2. 2. 3 De nitionoftheVectorProduct...

We gebruiken cookies om er zeker van te zijn dat je onze website zo goed mogelijk beleeft. Als je deze website blijft gebruiken gaan we ervan uit dat je dat goed vindt. Ok