The book investigates static and dynamic behavior of nanocomposites using various reinforcements. It discusses matrices strengthened via various nanofillers like carbon nanotubes, graphene platelets and oxide powders. Equivalent properties of nanocomposites are obtained via homogenization techniques based on micromechanics approaches.
Emphasizing the static and dynamic behaviors of nanocomposite single- or multilayered structures in the framework of continuum mechanics-based approaches, Mechanics of Nanocomposites: Homogenization and Analysis investigates mechanical behaviors of polymeric matrices strengthened via various nanofillers and nanoparticles such as carbon nanotubes (CNTs), graphene platelets (GPLs), and graphene oxides (GOs). It covers equivalent properties of nanocomposites that are obtained via homogenization techniques based on micromechanics approaches. In addition, this comprehensive book:
Aimed at researchers, academics, and professionals working across mechanical, materials, and other areas of engineering, this work ensures that readers are equipped to fully understand the mechanical characteristics of nanocomposite structures so that they can design, develop, and apply these materials effectively.